Traffic calming: Getting over the hump

Eric Sundquist
Center for Quality Growth and Regional Development
Georgia Institute of Technology

Governments & Growth
November 17, 2004
Traffic calming origins

- Classical traffic engineering brings higher speeds and volumes.
 - Passive safety – for motorists.
 - Induced traffic.
 - Result: physical danger, reduced quality of life.

- Calming techniques develop from grassroots.
 - European response.
 - American response.

Swiss residents installed a curtain to slow vehicles.
Traffic calming defined

- Volume control through street design.
- Speed control (speed management) through street design.
- Not pedestrianization.
- Not enforcement (with exception of fixed cameras).

Volume control: half-closure with gap for bikes (above).

Speed control: speed table (left).
Speed control techniques

- Vertical (local roads, generally).
 - Speed hump.
 - Speed table.
 - Raised crosswalk.
 - Raised intersection.

Speed hump.

Raised crosswalk.
Speed control techniques (continued)

- Horizontal (local roads or thoroughfares)
 - Roundabout
 - Neckdown
 - Chicane
 - Center island
Speed control techniques (continued)

- Narrowing (local roads or thoroughfares).
 - Raised median.
 - Tightened turn radius.
 - Four- to three-lane conversion (road diet).
 - Lane narrowing.
 - Short building setbacks.

Narrowing achieved by landscaping and adding bike lanes.
Speed control techniques: (continued)

- Miscellaneous
 - Signage.
 - Textured pavement.
 - Gateway.
 - Automated enforcement.
 - Speed-activated stoplight.
 - Traffic-signal coordination.
 - Pavement markings.

Special sign (left), textured pavement (below).
Speed control by design: Some considerations

- Speed limits/enforcement.
 - “Proper” speed.
- Stop signs and stoplights.
- Standards and liability.
- Stakeholder participation.
 - Public.
 - Institutional.
- Areawide effects.
- Role of expertise.
Case study: Decatur

- Extensive streetscaping in the downtown.
- Speed humps and tables, and a few closures, in neighborhoods.
- Red-light cameras on residential thoroughfares.

Downtown Decatur.
Case study: Decatur

Figure 1. Motor vehicle collisions with pedestrians and bicyclists, January 2000-May 2003. (DeKalb County Board of Health.)

Key
- B – Bicycle
- D – Dart out
- CW – Crosswalk
- MB – Midblock
- SW – Sidewalk
- ? – Record missing or unknown
Case study: Decatur

<table>
<thead>
<tr>
<th>Travel direction</th>
<th>Ponce de Leon Avenue</th>
<th>Commerce Drive</th>
<th>Church Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West-bound</td>
<td>East-bound</td>
<td>Southwest-bound</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Speed limit</td>
<td>30</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Operating/85th percentile speed (mph)</td>
<td>44</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>Maximum speed (mph)</td>
<td>53</td>
<td>53</td>
<td>46</td>
</tr>
<tr>
<td>Difference between 85th percentile speed and posted limit (mph)</td>
<td>14</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Difference between 85th percentile speed and 30 mph</td>
<td>14</td>
<td>15</td>
<td>6</td>
</tr>
</tbody>
</table>
Case study: Decatur

Recommendation: “Road diets”
- Up to 24,000 VPD
- Improved safety
- Lowered speeds
- Little effect on capacity

Ponce de Leon Avenue.

Church Street.
Speed control:
General recommendations

- Better design can produce better results. Make speed control a criterion for road projects.
- Look at state-of-the-art practice, but consider novel designs.
- Engage stakeholders early.
- Pick experts carefully; be skeptical of “AASHTO says no....”
- Integrate traffic-calming projects with broader livability planning efforts.